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I. INTRODUCTION

The objective of this project was to evaluate two alternative approaches
(step approximation of strain history and ramp approximation of strain history) to
calculating the transient stress response of a linear viscoelastic material to an
arbitrary strain-time input, and to determine the better approach for calculating
effective modulus for motor ignition pressurization from stress relaxation data.

The project began with the plan of expanding the capability of an existing
programmable calculator program which calculates stress response to piecewise-
linear strain histories so that it could handle at least 20 individual constont-strain-
rate seqments. This proaram would then be used to calculate stress response using
both a series of‘step functions and a series of ramp functions to approximate a
specific "exact" continuous-slope transient strain history.

It was found that writing new calculator programs was more effective than
expanding the old program. One of these new programs can handle a piecewise-
linear strain history consisting of up to 50 constant-strain-rate segments (however,
only 35 ramps can be loaded frorv;l the tape data file in the present data format).
Other calculator programs (discussed later in this report) were written to perform
specific calculations.

A study was made to refine the methods of approximating the strain history
in each approach. To determine the accuracy of the stress response, the stress
responses were compared with the exact solutior. for a specific transient strain
history.

2.  SUMMARY

The modified power law representation of relaxotion modulus is amenable to
straightforward calculation of linear viscoelastic response to a constant rate
(ramp) strain input. A piecewise-linear function can approximate a complex strain
history with reasonable accuracy. This piecewise-linear function is merely the sum

of a series of ramp functions; the response of the material to the




piecewise-linear strain history is, in turn, sirply the summation of the responses to
the individual ramps.

This concept was applied successfully in the analyses described in this report.
The rms error in calculated stress using as few as 10 ramps to approximate a
fourth-order-polynomial strain history (quite similar to the strain history typically
produced by motor ignition pressurization) is shown to be less than 0.5%. This
nccuracy is superior to that obtained with 100 steps in the usual stepwise
approximation.

The technique was also applied to actual propellant data from low
temperature, high rate transient tests in which the propellant strain was driven by
a pressure dynamically applied to a fluid surrounding the test specimens. UJsing
stress relaxetion data the calculated stress agrees with the measured stress within
2.5% at peak stress. This excellent agreement provides evidence that linear
viscoelasticity may be successfully applied to the ignition pressurization problem,
althouah the problem of prestrain effects was not addressed. Also, the propellant
behavior departs dramatically from linear viscoelasticity once the peak stress is
passed; the linear prediction shows a much higher stress than is actually observed.
This departure from the linear prediction may not be important in predicting
failure, however.

3. AMALYSIS DETAILS

The analysis was done using a Hewlett-Packard 28I5A proarammable
calculator. During this study several programs, discussed later, were devised to
perform different calculations during the study. Two methods of approximating a
smooth strain time history were compared: approximation by o series of steps and
approximation by a series of ramps. The smooth curve used was a fourth-order

polynomial.,
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3.1 Overall Approach

The calculator pregrams developed and their use are described below.

3.1.1 Power Law Modulus Program - The Power Law Modulus Program was

written to calculate constants for a modified power law modulus equation

applicable to an isothermal loading situation, using given relaxation modulus data

as a function of time. The program forces the power law to fit three points[f’,i, {‘r(é‘i)]

where ¢is the "reduced time" t/aT, and &, is relaxation modulus.

The power law equation is
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Equations 3, 4 and 5 are solved in the calculator program by iterating on an
assumed value of E_ . The value of E , converges quickly to within | x 10-6 psi.

3.1.2 "Polynomial" Program - In this program the "hereditary integral" is

evaluated for a polynomial strain history given a modified power law
representation of the linear viscoelastic relaxation modulus. The program then
calculates the strain history and stress response,

The program first determines the constants in the polynomial
4
N n
€(t) —L Cht (6)
m=1
where T is the time variable describing the strain history. The constants are
determined from user input values of (t,e) at the point of maximum strain rate and

(t,€ ) at the point of maximum strain. The stress at time t is given by the

hereditary integral:
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Evaluation of this integral using F-quation 6 for the strain history results in

4

o(t) = Z A(,‘m + F‘mt‘ (8)

m=1
where
“m-1 -
= l m:_l_ A (m+n)

dop 5 jJ; (m+n—j) (cmhot ) 9

[ »

Fquations 6, 8 and 9 are irnplemented in subroutines which are also used in the
programs disctissed in Sections 3.1.3 and 3.1.4,

The calculatar program prints out time, strain, and stress at time defined by
a vser-input maximum time and number of increments.

3.1.3 Stepwise Approximation Program. - This program caiculates a stepwise

approximation to the polynomial strain history, evaluates the hereditary integral to
obtain the stress response, and calculates root-mean-square (rms) errors for the
strain history and stress response as compared to those (the "exact" values) for the
polynomial. Subroutines from the "Polynomial" program are used to caiculate the
"exact" stress and strain values.

The power law used is F quation 2. The hereditary integral, equation 7, when

evaluated at time fj during the j’h step, becomes

J
~ \{ n .
o(t) = E(t ) (be), + E (e)
o) i i P Tj (10)
where
ALi B (‘p)T * Ka[(hp)T h (ﬂp)T ] (b
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and t-=tj*Ko (Tjﬂ-T-) (12)

and where (Ep)f refers to the strain given by the polynomial (Eq 6) at time t; T; is
the time at which the ;th step occurs; and the parameters K ¢ and K are defined
pictorially in Figure |. (While Figure 1 shows the actual strain history as a ramp
function, the definition of K . and Ko are independent of the actual strain
history.) Variations in K€ and K0 allow different schemes for defining the
stepwise strain history (given a "rea!" continuous history) and computing a
corresponding stress history.

The program implements Equations 10, 1, and 12, calculates the rms relative
error in strain at m evenly spaced points in the strain history (relative to the
polynomial history) and calculates the rms relative error in the step-response
stresses relative to the "exact" polynomial-history response (only the stress values
at times t; are considered). The user controls the number of steps (NSTEPS) and
the parameter m as well as |'<e and ch

3.1.4 Piecewise-linear Approximation Program - This program calculates a

piecewise-linear approximation to the polynomial strain history, evaluates the
hereditary integral, and calculates rms relative errors for the strain history and
stress response. Subroutines from the "Polynomial" program are implemented to
calculated exact stress and strain values.

The power law used is Equation 2. The hereditary integral, Equation 7, when

evaluated at time t; during the jfh step, becomes:

- éoRi(tj - Ti)n+1
a(t) =‘_i=0 e + Ew(cp)j (13)
where -
[(ep)Ti+1 (ep)rj] i-1
R, = 7 - L R (14)
1 (a1 ~ 14 k=1
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and

t. =1, + K T. -1,
) J U(J*l J)

where (¢p)t refers to the strain given by the polynomial (Equation 6) at time t, j is

the time at which the ith ramp begins, and the parameter K is defined in Figure 2.

The program implements Equations 13, 14 and 15. The strain history and
stress response errors are calculated the same way as in the stepwise
approximation program (Section 3.1.3). The user inputs the number of steps
(NSTEPS), the parameter m, and K.

3.1.5 Application of Programs - The programs described in Sections 3.1.3 and

3.1.4 were used first to find the optimum values of K, and K for approximating a
ramp (taken as apolynomial with zero constants except for the linear term) with
steps, and then to find the optimum valve of Kv for approximating the polynomial
strain history with ramps. Finally, the performance of stenwise approximations to
the polynomial and piecewise-linear approximations to the polynomial were
compared to select the best way of approximating on arbitrary history. The
piecewise-linear approximation was found to be best. These calculations are
discussed in detail in Sections 3.2 and 3.3,

Finally, a new program, "Ramp-Series Stress Response for Arbitrary Load
History," was written to calculate a piecewise-linear approximation to an arbitrary
stroin history and to the corresponding stress response. The new program is very
similar to the "Piecewise-linear Approximation Program.” The primary differences
are that the new program uses a discrete table of time and strain values instead of
the polynomial history, and that it does not contain the error calculations. This

new program was applied to an actual strain history from data reported in AFRPL-

12
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Figure 2. Ramp Approximation to Polynomial Strain History.




TR-78-68, "Improved Solid Propellant Mechanical Properties Measurement for
Structural Analysis Input. The resulting stress history, as well as the stress

history resulting from a polynomial strain history which closely matches the actual
strain history, were compared with the actual measured stress history. These
results are discussed in Section 3.4,
3.2 Calculations for Ramp Strain History

An arbitrary modulus law (Equation 2) was used with &0 = 2.3859 x 103
psi (16.450 MPa), Ew = 55.408 psi (0.38202 MPa), and n = -0.32790, with t in
minutes (for t in seconds, the value of éo would be 623.16 psi (4.297 MPa)). The
Stepwise Approximation Program was used with a ramp substituted for the
polynomial (C = 21.923, C = C3 = C4 = 0, for t in minutes; Cj = 0.36538, C2 = C3 =
Cq = 0 for t in seconds).

Figure 3 shows the ramp strain history and the resulting "exact" stress
response used in this part of the study.

Initial runs with the Stepwise Approximation Program were made using
selected values of the parameters K & Kc, and NSTEPS as shown in Table {. The
results (shown in Figures 4-6) show the rms stress error as a function of Kofor Ke =
0, 0.5, and 1.0 (these K_ values were chosen because they are simple to use for
evenly spaced time intervals when the data is available only in discrete form).
Additional runs were made to search out the optimum (i.e., least-error) value of Ko
for each K. . The best results were obtained with Ke = 0.5 and Ke = 0.35.
Interestingly, it can be shown that, for a single step approximating a ramp over the
time interval Tp, the value of K, which yields identical stresses for the ramp and

the step (for K. £ 0) is

~

'E (KTt M
B (Kytgd” + E

-]

K =K - * n
o e | E X 1)
o'om

RS

~
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TABLE 1. MATRIX OF PARAMETERS FOR INITIAL "RAMPS" CALCULATIONS
N STEPS 100 30 10 3 1
K = .5
Ko = .25
Ko = .5
Ky =.75
Ko = 1.0
K, =0
Ky = .25
Ky = .5
K, = .75
K,= 1.0
K, =1
Ky = .25
Kg = .5
Kg = .75
K‘ = 1.0

16
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Figure 6. Variation of Stress Error
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For v =1.3x 10-3 and the modulus law constants used in the study, this equation
yields K; = 0.674 K, which agrees fairly closely with the results in Figures 5 and
6. The optimum value of K, may therefore be a function of the modulus constants.

This factor was not explored further in the study. +3

Stress errvor {dimensicnless)

Logy, (N STEPS)

Figure 8. Variation of Stress Errcr with Number ¢t Time Intervals
foer Ky = .35 (Step Approximaticn tc Linear Rampj.

Figures 7 and 8 show the variation of stress error with NSTEPS. As can be
verified by a log-log plot of the variables, the stress error varies as |/“,_F\TS-TE5§, so
that the user pays a heavy price in computation time to improve accuracy by
increasing the number of steps. 1t is obvious from these figures that using either K
= 0.5 or K, = 1.0 is vastly preferable to using K, = 0, and that using the optimum
value of K for each K, provides a substantial improvement in the stress error in

comparison to an arbitrary value of K = 0.5.
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Figure 9. Variation of Stress Error with Strain History Error for KO = 0.5
(Step Approximation to Ramp).
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Figure 10. Variation of Stress Error with Strain History Error for Optimum
K0 (Step Approximation to Ramp).

Figures 9 and 10 show the variation of stress error with strain history error;
the improvement provided by the optimum Ky values is again clearly evident.

The lowest error is obtained using K, = 0.5 and the corresponding value of Ky
(K4 = 0.35). These values were selected for use in the continued study described in

the following section.
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Figure 11. Polynomial Strain History Used in Study.

3.3 Calculations For Polynomiaf Strain History

The arbitrary modulus law (Eq 2) used in the calculations for a ramp strain

history and the constants £, Ew . and n are given in Section 3.2 were also used in

this part of the study.

The Piecewise-linear Approximation Program was used with a polynomial
strain history. The constants were determined, using the control points shown in

Figure 1 1qa, with the "Polynomial" program. The resulting constants are:

(Time in Minutes)
C| = 2.7549

C2 = 6.3493 x 104

C3 = -5.0683 x 107

Cy = 1.0142 x 1010

(Time in Seconds)
C] = 1.6529 x 102

Cp - 2.2857 x 108
C3--1.0948 x 1013

Cy - 13144 x 1017

The resulting "exact" stress response is shown in Figure | 1b.
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Figure 12. Variation of Stress Error with K; (Ramp Approximation
to Polynomial, 30 Time Intervals)




Initial runs with the Piecewise-linear Program were made using selected

values of the parameters K, —and NSTEPS as shown in Table 2. The results are

* shown in Figure 2.
TABLE 2. MATRIX OF INITIAL K, VALUES USED IN PIECEWISE-LINEAR ANALYSES
Ke 001 .25 S5 5 1.0 '
NSteps = X X X X X '"
30

Additional runs (Table 3) were made to search out the optimum (i.e., least-error)

value of l»% The best result was obtained at l&: .833.

TABLE 3. MATRIX OF ADDITIONAL ANALYSIS PARAMETERS

N STEPS 100 30 10 3 |
{Ramps)

Ky =833 | X X X X X
(Ramps)

K(T =.5 X X X X X
(Steps

K, =.5

K, =.5 X X X X X
(Steps)

K, =.5

Kcr = .5 X X X X X

Based on the discussion in Section 3.2, the optimum value of Ky is probably
dependent on the modulus constants. This study did not explore this factor
further.

Figure 13 (based on the results of the additional runs indicated in Table 3)
shows the piecewise-linear approximation s superior to the stepwise
approximation. The piecewise-linear approximation has a much lower stress error
for any combination of NSTEPS and the controlling parameter Kywhich forces the
stepwise program's error below 5%. For example, using optimum values of Ky s the

piecewise-linear approximation . ith NSTEPS - 10 vyields a lower error than

ro
[3S]




Figure 13.

Ky = .5 (steps)
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Variation of Stress Error with Number of Time
Intervals (Ramp and Step Approximations to Polynomial).




using the stepwise approximation with NSTEPS - 100. If an rms error of 0.5% is
acceptable in the stress response, then a value of NSTEPS = |0 should be sufficient
in a piecewise-linear approximation of a general strain history,

3.4 Application to Actual Data A

AFRPL-TR-78-68, "™Improved Solid Propellant Mechanical Properties 1
Measurement for Structurol Analysis Input" (Thiokol/Huntsville, September 1978),
reports the results of dynamic tests of propeliant samples under simulated motor
ignition conditions. In these tests propellant samples were immersed in a
temperature-conditioned fluid and held at a predetermined strain level to simulate
motor storage thermal foads.  The fluid was then pressurized with gas, providing a
transient pressure history similar to a motor ignition pressurization. The test
equipment was arranged so that the pressurized fluid drove the test machine ram
downward aqainst the resistance of steel springs (as well as the propellant sample's
resistance and the inertia of moving parts). The result was a transient strain
history that simulated the strain at the inner bore of a rocket motor undergoing
ignition pressurization.

Since the stress-strain data for some of these tests was reported, along with
conventional relaxation test data, an ideal test case was provided for the
techniques studied in the present effort. F‘igure 14 is a photograph of the :
oscillograph ("strip chart") data (Figure 9 in AFRPL-TR-78-68). This data ;

corresponds to Run No | in Table F-5 of AFRPL-TR-78-68. The prestrain level for

the tests was zero. Other test parameters and results given in Table F-5 of

AFRPL-TR-78-68 were:

Temperature: -650F (-53.90C) q

Maximum Pressure: 1310 psi (9.03 MPa) s i
L 4

Time to Maximurn Pressure: 67.9 ms i

Strain at Maximum Pressui « 0.0317 in/in (.0317 mm/mm)

Stress ut Maximum Pressure: 732 psi (5.05 MPa)
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These values were used to scale the data shown in Figure 14, In scaling the
displacement traces the amplitude of both Dy and D2 were taken as 0.0317 in/in
(0.0317 mm/imm); the resulting scaled strains were then averaged. The scaled data
is given in tiqures 15 and 16. (A careful exarnination of Figure |4 will reveal that
the irage is distorted, presumably by perspective effects in the photography. An
effort was made to accurately account for the distortion in scaling the data.)
Comparison of Figure |5 with Figure 16(a) shows that the strain history lags
the pressure history somewhat but otherwise corresponds fairly closely. The strain
history has the sarme general appearance as the polynomial history shown in Figure
Il (up to the peak value), except for an added oscillation or "burnpiness", which

appears even more strongly in the stress history (Figure 16(h)).
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The relaxation modulus for this propellant was determined ot several
different strain levels. The data reported for 2.5% strain as well as two different
analytical representations is shown in Figure 17. The power law and the log-
quadratic equations are tangent at the logjo (t/aT) = -7 point (with t/aT in
minutes). While the combination of these two functions fits the data well over the
entire range of data, the log-quadratic function produces a hereditary integral
which must be numerically evaluated for any strain history other than a step
function. In practice, the power law is the only part of the combination involved in
evavlating propellant response under the loading conditions of interest in this
report because only reduced times less than 10-7 minutes are involved. It was felt
that the Thiokol power law had a higher slope than was supported by the data, so
two alternative modified power laws were determined using the Power law
Modulus Program discussed earlier. These «alternative representations are
"Modified Power Law Number 1", shown in Figure 18, and "Modified Power Law
Number 2", shown in Figure i9. The difference between these two representations
is in the center control point (the modulus equation was forced through the three
points shown in each figure). The modulus constants (for a temperature of ~650F
(-S3.9°C))determined for the modified power law equation (Eq. 2) for the English

systern of units (modulus in psi, t/aT in minutes) are:

~

lio si L. psi n (dim)
Modified Power Law No | 2497 38.8 -0.28252
Modified Power Law No 2 2426 449 -0,30382

For the Si system of units (modulus in MPq, t/aT in seconds), the constants are:

-~

Eo | psi E, , MPa n (dim)
Modified Power Law No | 54.74 0.268 -0.28252

Modified Power Law No 2 58.03 0.310 -0.30382

I
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The two modified power las representations are related to the relaxation

data by the WL shift factor (:\.l ) equation,

T T T R (16)

which was determined by Thiokal <pecificallv tor the relaxation data in Figures 17,
I8, and 19, In this equation. I "+ in K. The calculations in this report use a value
of 298,15 where the value 298 appears in | quation 16:  this corresponds to a
reference temperature (for which Laq a7 - 0V of 7700 or 250C.

Fxarnination of I iqures 18 and 12 <hows that "Modified Power Law | lumber 2"
agrees better with the measired data at very short times (t/a7 < 10-2) min), while
Nodified Power Law Moumber | agrees hetter with the data for longer reduced
times. We are concerned with reduced times shorter than 10-8 minutes, so
"Modified Power Law [lumber 2" appears preferable to "Modified Power Law
Number |." "Modified Power Law MNumber 2" also appears to be more consistent

with the relaxation dot.. than does the Thiokol power law.

30
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The strain histories considered are shown in Figures 20{a) and 21(a). The data

points plotted as circles were scaled from Figure 14 using strain at maximum

pressure to determine scale factors.

Equation 6 were:

O

Time in Minutes

C) = 5.5035 x 102 (min)-|
C7 = 8.8909 x 104 (min)-2
C3 = -7.7605 x 107 (min)-3

Cy = 1.8332 x 1010

maximum at the control points shown in Figure 20(a).

Time in Seconds

C) = 9.1725 x 10-4 (sec)-!
C2

C3 = -3.5928 x 102 (sec)-3

i

24,697 (sec)-2

Cy = 14145 x 103 (sec)-4

The polynomial strain history was forced through a point of inflection and a

The resulting constants in




The resulting stress responses are shown in [ igure 20(h), olong with the stress

" anr

data (Circles) scaled Trom Figure ey, tor hoth "Modificd Power L aw Homber |
"oditied Power Law Timnber 2% As oxpected, "Modified Power Law Fomber 27
agrees better with the data. Flotably, the "bumpiness” seen in the data is not
captured in the stress response (the polynoniial strain history smooths threugh the
Shormns in the strain historv).,  The calculated stress for "Maodified Power Law
Fannber 2% wxgrees gitdte well withy the measured stress throogh the mmaximum
measured Ltress point. However, once the stress begins to decrease, the calculated
viseoclastic response fails to drop off as goickly as the measured stress. By the

teoe b ek pressire ot e T e 1270 sisecd the caleulated stress s
U b Fhan e e Tod caress,

Apiecewise=linear o isier 2owas constroc ted through the data points
froor Figure 14, as shown in b igere 2ol The vatoe of v, used (soo b quation 15
o Figure 2 was (L8333 (tas valoe was foond to produce minimum root mean
squoere crror an the stoeie Bisoosed i Section 33,0 which used a similar strain
Bistor 7 and modoius constantsh, Tie results were essentially identical 1o those for
the polynomiiai strain hustory. except that the codealated stress 1osponse followed
the "hurmps” seen i the ac foal data

'

Vi 44

oot fhe resinta ] e observe thot

(1) Wodibied Power ooy Dioinbier 27 0s a qood approviina tion to the linear
sisc oelastic rnoduius at Righ rates {although ve had to extrapolate beyond the
range of nieasored data for the problero at hane),

(7)  Uinear viscoelasticity (based on the hinnted data available) appears to

accuratels predict stress response to a transient stram bisfory without a prestrain,

although stresses hevoned the thme of actoal peak stress are overpredicted. (Some

damage effects mav be the coase of the more tapid drop-off in measured stress).

The crror atb peale stress for o he palvnoriial and piccewise fincar strain history
(JPPNIU'HHN(”"\ is bess thons 20 g, Cof e rneasurod valne of 80 psiy or less than
5T




4, CONCLUSIONS AND RECOMMENDATIONS
This successful analysis effort fully met the objectives. Some innovative

approaches to the analysis of propellant viscoelastic response under motor ignition

pressurization conditions were developed, and a number of useful calculator
programs were created for AFRPL in-house use.

We recommend that the techniques developed in this program be extended to
the more difficult problem of thermal transient loc;ding with coupled strain and
temperature histories. We also recommend that the techniques be applied to
problems involving prestrain to determine whether prestrain causes the linear

approach to fail.




